Reg. No.				
3				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.SC., PHYSICS/CHEMISTRY

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE	
II	PART - III	ELECTIVE GENERIC-2	U23MA2A2	VECTOR CALCULUS	

	& Sess	ion: 03	3.05.2025/FN Time: 3 hours Ma	ximum: 75 Marks		
Course Outcome	Bloom's K-level	Q. No.	SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.			
CO1	K1	1.	A physical quantity which has only magnitude is			
			a) scalar b) vector c) matrix d) s	et		
CO1	K2	2.	Discuss a physical quantity both magnitude and direction	is named as		
			a) scalar b) vector c) matrix d) s	et		
CO2	K1	3.	A vector F is called harmonic vector if			
			a) $\nabla^2 R = f$ b) $\nabla^2 F = 0$			
			c) F=0 d) None of these			
CO2	K2	4.	If $\nabla X \mathbf{V} = 0$. Then \mathbf{V} is said to bevector			
			a) irrotational b) variable			
			c) solenoidal d) constant			
CO3	K1	5.	If a vector field \mathbf{F} is such that $\mathbf{F} = \nabla \emptyset$ then \mathbf{F} said to be			
			a) variable b) conservative			
			c) Parallel field d)None			
CO3	K2	6.	If $\mathbf{F} = 2x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then $\nabla \cdot \mathbf{F} =$			
			a) 0 b) 2 c) 1 d) 4			
CO4	K1	7.	a) 0 b) 2 c) 1 d) 4 If F=x i +y j +az k is solenoidal then 'a' is			
			a) 0 b) 2 c) -2 d) 1			
CO4	K2	8.	The necessary and sufficient condition that \int f.dr be inde	ependent of the		
			path is	-		
			a) $F = \nabla \emptyset$ b) $\nabla \times F = 0$ c) $\nabla \cdot F = 0$ d)3			
CO5	K1	9.	Green's theorem in space is same astheorem			
			a) Stoke's b) Gauss convergence			
			c) Gauss divergence d) Fermat's			
CO5	K2	10.	By Stoke's theorem if \mathbf{r} =xi+yj+z k then $\iint (\nabla x \mathbf{r}) \mathbf{n}.ds =$			
			a) -1 b) 1 c) none d)0			
0	100 .		<u>SECTION - B (5 X 5 = 25 Marks)</u>			
Course Outcome	Bloom's K-level	Q. No.	Answer ALL Questions choosing either (a)	or (b)		
CO1	КЗ	11a.	Find the directional derivative of $\emptyset = xy^2 + yz^3$ at the poin	t (2,-1,1) in the		
			direction of i +2 j +2 k			
001	170	1 1 1	(OR)			
CO1	КЗ	11b.	Find the unit normal to the surface x^3 -xyz+ z^3 =1 at (1,1,1)			

CO2	КЗ	12a.	Find the curl (curl F) at the point $(1,1,1)$ if $F=x^2y\mathbf{i}+xz\mathbf{j}+2yz\mathbf{k}$ (OR)
CO2	КЗ	12b.	P.T div \mathbf{r} =3 and curl \mathbf{r} =0 when r is the position vector of a point (x,y,z) in space.
CO3	K4	13a.	Evaluate $\int f.d\mathbf{r}$ over \mathbf{C} where $f=(x^2+y^2)\mathbf{i}+(x^2-y^2)\mathbf{j}$ and \mathbf{c} is the curve $y=x^2$
CO3	K4	13b.	joining (0,0) and (1,1) (OR) If f = x²i-xyj and C is the straight line joining the points (0,0) and (1,1) Evaluate integral over∫ f. dr over C
CO4	K4	14a.	Explain the volume of the sphere $x^2+y^2+z^2=a^2$ as a volume integral (OR)
CO4	K4	14b.	Evaluate by using stoke's Theorem $\int yzdx + zx dy + xy dz$ where C is the curve $X^2 + Y^2 = 1$, $Z = Y^2$
CO5	K5	15a.	using green's Theorem, Evaluate $\int (xy-x^2)dx+x^2y$ dy along the closed curve C formed by $y=0, x=1$, and $y=x$
CO5	K5	15b.	(OR) State the Gauss divergence Theorem.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$
CO1	К3	16a.	Find the equation of the (i)Tangent plane (ii)Normal line to the surface xyz=4 at the point (1,2,2) (OR)
CO1	КЗ	16b.	Find the angle between the surfaces $x^2+y^2+z^2=29$ and $x^2+y^2+z^2+4x-6y-8z-47=0$ at $(4,-3,2)$
CO2	K4	17a.	P.T the curl (r x a) = $-2a$ where a is a constant vector
CO2	K4	17b.	(OR) P.T div(r^n r)=($n+3$) r^n . Deduce that r^n r is a solenoidal iff $n=-3$
CO3	K4	18a.	Find the workdone by the force $F=3xy\mathbf{i}-5z\mathbf{j}+10x\mathbf{k}$ along $x=t^2$, $y=2t^2$, $z=t^3$ from $t=1$ to $t=2$
			(OR)
CO3	K4	18b.	Evaluate \int f. dr over C where $f=(3x^2+6xy)\mathbf{i}+(3x^2-y^2)\mathbf{j}$ along the curve $y=2x$ joining the points $(0,0)$, $(1,2)$
CO4	K5	19a.	Evaluate $\int_0^{\log x} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$
0.0.4	***	1.01	(OR)
CO4	K5	19b.	Justify green's theorem for the function $f=(x^2+y^2)\mathbf{i}-2xy\mathbf{j}$ and the curve c is the rectangle in the xy plane bounded by $y=0,y=b$, $x=0$, $x=a$
CO5	K5	20a.	Justify Stoke's theorem for the function $f = y^2 \mathbf{i} + y \mathbf{j} - x z \mathbf{k}$ and s is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and $z \ge 0$
CO5	K5	20b.	Justify Gauss divergence theorem for the function $f=y\mathbf{i}+x\mathbf{j}+z^2\mathbf{k}$ for the cylindrical region S is given by $x^2+y^2=a^2,z=0$ and $z=h$